欢迎来到安博体育公司,我们竭诚为您服务!

主页 > 新闻中心 > 行业资讯

安博体育流体设备pdf

时间:2023-11-27 21:42 来源:网络

  安博体育本发明提供了能够提高超声波相对于流体的传递效率的流体设备。流体设备(10)具备:流路(20),供流体(S)流通;以及超声波元件(44),通过向流体发送超声波,使流路内的流体沿着与流体的流通方向正交的第一方向产生驻波(SW),超声波元件具有:振动部(421),具有与流体接触的流体接触面(422);以及压电元件(43),设置于振动部,使振动部向流体接触面的法线方向挠曲振动,在将法线方向上的振动部的厚度设为t,将流体的介质的音速设为C,将在振动部内传递的纵波的平均音速设为C’,将第一方向的流路的尺寸设

  (19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 CN 114076621 A (43)申请公布日 2022.02.22 (21)申请号 2.0 (22)申请日 2021.07.28 (30)优先权数据 2020.07.30 JP (71)申请人 精工爱普生株式会社 地址 日本东京 (72)发明人 小岛力小野木智英清濑摄内 宫坂满佐佐木美绪 (74)专利代理机构 北京康信知识产权代理有限 责任公司 11240 代理人 李丹 (51)Int.Cl. G01F 1/667 (2022.01) B06B 1/06 (2006.01) 权利要求书1页 说明书12页 附图6页 (54)发明名称 流体设备 (57)摘要 本发明提供了能够提高超声波相对于流体 的传递效率的流体设备。流体设备(10)具备:流 路(20),供流体(S)流通;以及超声波元件(44), 通过向流体发送超声波,使流路内的流体沿着与 流体的流通方向正交的第一方向产生驻波(SW), 超声波元件具有:振动部(421),具有与流体接触 的流体接触面(422);以及压电元件(43),设置于 振动部,使振动部向流体接触面的法线方向挠曲 振动,在将法线方向上的振动部的厚度设为t,将 流体的介质的音速设为C,将在振动部内传递的 纵波的平均音速设为C’,将第一方向的流路的尺 寸设为L,将驻波的模式次数设为n时,满足式 A 1 2 6 6 7 0 4 1 1 N C CN 114076621 A 权利要求书 1/1页 1.一种流体设备,其特征在于,具备: 流路,供流体流通;以及 超声波元件,通过向所述流体发送超声波,使所述流路内的所述流体沿着与所述流体 的流通方向正交的第一方向产生驻波, 所述超声波元件具有: 振动部,具有与所述流体接触的流体接触面;以及 压电元件,设置于所述振动部,使所述振动部向所述流体接触面的法线方向挠曲振动, 在将所述法线方向上的所述振动部的厚度设为t,将所述流体的介质的音速设为C,将 在所述振动部内传递的纵波的平均音速设为C’,将所述第一方向上的所述流路的尺寸设为 L,将所述驻波的模式次数设为n时,满足下式: 2.根据权利要求1所述的流体设备,其特征在于, 在将与所述振动部的所述法线方向正交的短边方向的尺寸设为W,将泊松比为0.3时的 所述振动部的平均杨氏模量设为E’,将所述流体的介质的音速设为C时,满足下式: 3.根据权利要求1或2所述的流体设备,其特征在于, 所述振动部以与所述驻波中的与任意波腹对应的波腹区域对置的方式配置。 4.根据权利要求1所述的流体设备,其特征在于, 所述振动部以所述流体接触面的所述法线方向沿着所述第一方向的方式配置。 5.根据权利要求1所述的流体设备,其特征在于, 与所述流通方向以及所述第一方向分别正交的第二方向上的所述流路的尺寸比所述 第一方向上的所述流路的尺寸小。 6.根据权利要求1所述的流体设备,其特征在于, 所述流体设备还具备: 压力室,储存所述流体;以及 连通路,沿着所述第一方向形成,并且将所述流路与所述压力室连通, 所述超声波元件以所述流体接触面与所述压力室内的所述流体接触的方式配置。 2 2 CN 114076621 A 说明书 1/12页 流体设备 技术领域 [0001] 本发明涉及流体设备。 背景技术 [0002] 以往,已知有使流体中的微粒子声音收敛的流体设备安博体育。 [0003] 例如,非专利文献1所公开的流体设备具备:流路基板,其为形成有流路的玻璃基 板等;以及压电元件,其设置于流路基板。由压电元件产生的超声波经由流路基板被传递到 流路内,使流路内的流体产生驻波。流体中的微粒子通过由驻波形成的压力梯度而收敛于 流路内的规定范围。 [0004] 现有技术文献 [0005] 非专利文献 [0006] 非专利文献1:太田亘俊(Nobutoshi Ota),其他6名,“微流体设备减薄对于微纳米 粒子的声音聚焦的增强(Enhancement  in  acoustic  focusing  of  micro  and  nanoparticles by thinning a microfluidic device)”,2019年12月,皇家学会开放科学 (Royal Society Open Science),第6卷,第2号,报道号181776 发明内容 [0007] 但是,在上述非专利文献1所记载的流体设备中,流体的声音阻抗与流路基板的声 音阻抗之差较大,因此由压电元件产生的超声波在从流路基板向流体传播时,大部分的超 声波在流路基板与流体的边界反射。由此,超声波相对于流体的传递效率降低,其结果为, 为了产生驻波,施加于压电元件的驱动电压、驱动频率增大。 [0008] 本公开的一个方式所涉及的流体设备具备:流路,供流体流通;以及超声波元件, 通过向所述流体发送超声波,使所述流路内的所述流体沿着与所述流体的流通方向正交的 第一方向产生驻波,所述超声波元件具有:振动部,具有与所述流体接触的流体接触面;以 及压电元件,设置于所述振动部,使所述振动部向所述流体接触面的法线方向挠曲振动,在 将所述法线方向上的所述振动部的厚度设为t,将所述流体的介质的音速设为C,将在所述 振动部内传递的纵波的平均音速设为C’,将所述第一方向上的所述流路的尺寸设为L,将所 述驻波的模式次数设为n时,满足下式: [0009] 附图说明 [0010] 图1是示意性地表示第一实施方式的流体设备的一部分的剖视图。 [0011] 图2是图1的A‑A线是示意性地表示第二实施方式的流体设备的一部分的剖视图。 [0013] 图4是图3的B‑B线是示意性地表示第三实施方式的流体设备的一部分的剖视图。 [0015] 图6是图5的C‑C线…流路,30…流路基板,31…上侧壁部,311…贯通孔, 32…下侧壁部,33…侧方壁部,331…贯通孔,34…侧方壁部,40…超声波产生部,41…元件 基板,411…开口部,42…振动膜,421…振动部,422…流体接触面,43…压电元件,44…超声 波元件,51…压力室,52…连通路,H…流路深度,L…流路宽度,M…微粒子,N…波节,A…波 腹,RA…波腹区域,RN…波节区域,S…流体,SW…驻波,t…振动部的厚度,W…振动部的短边 方向的尺寸。 具体实施方式 [0018] [第一实施方式] [0019] 以下,参照图1以及图2对第一实施方式的流体设备10进行说明。 [0020] 图1是示意性地表示第一实施方式的流体设备10的一部分的剖视图,图2是图1的 A‑A线和设置于流路基板30的超声 波产生部40。 [0022] 在该流体设备10中,超声波产生部40通过对在流路20中流通的流体S施加超声波, 从而沿着与流体S的流通方向正交的一个方向产生任意的模式次数的驻波SW。分散于流体S 中的微粒子M在流路20内流通的过程中受到由驻波SW形成的压力梯度的影响,收敛于流路 20内的规定范围。 [0023] 在这样的流体设备10中,例如,通过设置使流路20中的微粒子M收敛的范围的流体 S选择性地流通的浓缩用流路和使除此以外的范围的流体S选择性地流通的排出用流路,能 够浓缩流体S中的微粒子M的浓度。 [0024] 需要说明的是,在图1中,示意性地例示了通过1次模式的驻波SW收敛的微粒子M的 情形。另外,在图2中,省略微粒子M的图示,将在流路20内产生的驻波SW作为压力波形示出。 [0025] [流体设备10的结构] [0026] 参照图2对流体设备10的简易结构进行说明。 [0027] 流路基板30是在内部形成有流路20的基板。该流路基板30例如可以通过将具有与 流路20对应的槽部的一对基板相互接合来制作。作为构成流路基板30的各基板,没有特别 限定,例如可以利用玻璃基板、硅基板。 [0028] 需要说明的是,虽然省略图示,但在流路基板30上设置有用于将流体S注入到流路 20中的注入口以及用于将流体S从流路20排出的一个以上的排出口。在流路20分别与上述 的浓缩用流路以及排出用流路连接的情况下,在这些流路分别设置有排出口。 [0029] 在本实施方式中,形成于流路基板30的流路20的截面为矩形,流路20的深度方向 与流路基板30的厚度方向一致。另外,在流路20中流动的流体S的流通方向与流路20的深度 方向正交,流路20的宽度方向与流路20的深度方向以及流体S的流通方向分别正交。 [0030] 以下,将流体S的流通方向设为X方向,将流路20的宽度方向设为Y方向,将流路20 的深度方向设为Z方向。X、Y、Z方向相互正交。 4 4 CN 114076621 A 说明书 3/12页 [0031] 流路基板30具有:在Z方向的一侧构成流路20的壁部的上侧壁部31;在Z方向的另 一侧构成流路20的壁部的下侧壁部32;以及在Y方向的两侧构成流路20的壁部的侧方壁部 33、34。 [0032] 在流路基板30上设置有沿Z方向贯通上侧壁部31的贯通孔311。 [0033] 超声波产生部40以堵塞流路基板30的贯通孔311的方式设置于流路基板30。由此, 超声波产生部40构成流路20的壁部的一部分。 [0034] 具体而言,超声波产生部40具备:元件基板41;被元件基板41支承的振动膜42;以 及设置于振动膜42的压电元件43。 [0035] 元件基板41由Si等半导体基板构成。该元件基板41在流路基板30的贯通孔311内 以元件基板41的厚度方向沿着Z方向的方式配置,元件基板41的外周面与流路基板30的贯 通孔311的内周面液密地接触。 [0036] 另外,在元件基板41上设置有沿着元件基板41的厚度方向贯通元件基板41的开口 部411。 [0037] 振动膜42例如由SiO 膜以及ZrO 膜等层叠了多种膜的层叠体等构成。该振动膜42 2 2 被元件基板41支承,并且将开口部411的一侧(流路20侧的相反侧)封闭。 [0038] 另外,振动膜42中的从元件基板41的厚度方向观察时与开口部411重叠的部分构 成进行超声波的发送的振动部421。振动部421所具有的一对的面中的一个面成为与从流路 20流入开口部411内的流体S接触的流体接触面422。 [0039] 在此,振动膜42以振动膜42的厚度方向(流体接触面422的法线方向)沿着Z方向的 方式配置。 [0040] 压电元件43相对于振动部421设置于流体接触面422的相反侧的面。虽然省略了图 示,但该压电元件43通过在振动部421上依次层叠下部电极、压电膜以及上部电极而构成。 [0041] 在这样的超声波产生部40中,由振动部421和配置在该振动部421上的压电元件43 构成超声波元件44。 [0042] 在该超声波元件44中,压电元件43与省略图示的驱动部连接,当从该驱动部向压 电元件43输入驱动信号时,在下部电极与上部电极之间被施加电压,使得压电膜伸缩。由 此,振动部421以与振动部421的短边方向的尺寸W(开口部411的开口宽度)等相应的规定的 振荡频率向流体接触面422的法线的挠曲振动通过被转换为流体 S的疏密波来进行超声波的传播。传播到流体S的超声波以振动部421为中心呈放射状扩散, 其中朝向Y方向前进的超声波反复被流路20的内壁反射,从而在流路20内产生驻波SW安博体育。 [0043] 在此,在流路20内,为了在Y方向上产生驻波SW,流路20的Y方向的尺寸即流路宽度 L[m]满足以下的式(1)。 [0044] [0045] 需要说明的是,n是驻波SW的模式次数,C是流体S的介质的音速[m/sec],F是压电 元件43的驱动频率[Hz]。需要说明的是,驱动频率F与上述的振动部421的振荡频率对应。 [0046] 根据上述式(1),假设在介质是水的情况下的介质的音速C为1500m/s、驻波SW的模 式次数n为1、压电元件43的驱动频率F为600kHz的情况下,流路宽度L被设定为1.25mm。 [0047] 另外,为了抑制在流路20内产生Z方向的驻波,流路20的Z方向的尺寸即流路深度H 5 5 CN 114076621 A 说明书 4/12页 [m]满足以下的式(2)。 [0048] [0049] 根据上述式(2),流路深度H比通过上述(1)计算出的驻波SW的模式次数n为1时的 流路宽度L小。即,根据上述式(1)、(2),流路20形成为流路深度H比流路宽度L小。 [0050] 或者,为了抑制在流路20内产生Z方向的驻波,流路深度H也可以不满足上述式 (2),而设定为明显大于通过上述式(1)设定的流路宽度L。在该情况下,存在在Z方向上产生 高次模式的驻波的可能性,但这样的高次模式的驻波与在Y方向上产生的驻波SW相比,声音 功率小,因此能够忽略其影响。 [0051] [振动部421的厚度] [0052] 在压电元件43被驱动时,不仅产生使振动部421产生挠曲振动的横波,还产生在振 动部421的内部传播的纵波。 [0053] 假设在振动部421的厚度t比纵波的波长λ大的情况下,在振动部421内纵波占据主 导地位,超声波从振动部421向流体S的传播效率降低。即,与未取得声音阻抗的匹配的状态 相同。 [0054] 另外,即使在假设振动部421的厚度t比纵波的波长λ小的情况下,也会在振动膜42 内产生一些纵波。特别是,在振动部421的厚度t与λ/4相等的情况下,振动部421作为纵波的 声音匹配层发挥功能,在振动部421内产生的纵波容易向流体S传播,但在纵波发射声音的 情况下,与在横波发射声音的情况相比,超声波从振动部421向流体S的传播效率降低。 [0055] 因此,在本实施方式中,振动部421形成为厚度t比纵波的波长λ的1/4小。即,振动 部421的厚度t[m]满足以下的式(3)。 [0056] [0057] 需要说明的是,振动部421的厚度t是沿着相对于流体接触面422的法线)中的纵波的波长λ[m]由以下的式(4)来表示。 [0059] [0060] 在上述式(4)中,C’是在振动部421内产生的纵波的平均音速[m/sec],F是压电元 件43的驱动频率[Hz]。 [0061] 根据上述式(4),上述式(3)由以下的式(5)来表示。 [0062] [0063] 另外,如上所述,上述式(5)中的驱动频率F满足以下的式(1)。 [0064] [0065] 在上述式(1)中,L是流路宽度[m],n是驻波SW的模式次数,C是流体S的介质的音速 [m/s],F是压电元件43的驱动频率[Hz]。 [0066] 根据上述式(1)、(5),振动部421的厚度t满足以下的式(6)。 6 6 CN 114076621 A 说明书 5/12页 [0067] [0068] 另外,本实施方式的振动膜42是多个膜的层叠体。即,本实施方式的振动部421由 多个膜构成。在该情况下,在振动部421产生的纵波的平均音速C’通过以下的方法计算。 [0069] 在此,在将构成振动部421的膜的数量设为m,将构成振动部421的各膜的厚度设为 t (k=1、2、…m),将构成振动部421的各膜中的纵波音速的平均值设为C (k=1、2、…m)的情 k k 况下,以下的式(7)成立。 [0070] [0071] 另外,振动部421的厚度t由以下的式(8)来表示。 [0072] [0073] 因此,根据上述式(7)、(8),在振动部421产生的纵波的平均音速C’由以下的式(9) 来表示。 [0074] [0075] 另外,从提高超声波从振动部421向流体S的传播效率的观点考虑,振动部421的厚 度t优选为满足上述式(6)并且为更小的值。 [0076] 但是,如果振动部421的厚度t过小,则振动部421的朝向厚度方向的应力梯度变 大,因此在压电元件43被驱动时,振动部421产生破损的可能性变高。 [0077] 因此,在本实施方式中,进行了使振动部421的短边方向的尺寸W和振动部421的厚 度t变化来驱动压电元件43的实验,其结果为,振动部421的厚度t优选满足以下的式(10)。 [0078] [0079] 在上述式(10)中,W是振动部421的短边方向的尺寸[m],E’是将泊松比设为0.3时 的振动部421的平均杨氏模量[Pa],n是驻波SW的模式次数,C是流体S的介质的音速[m/ sec]。如果振动部421的厚度t比通过上述式(10)的左边求出的厚度薄,则振动部421破损的 可能性变高。 [0080] 需要说明的是,如上所述,本实施方式的振动部421由多个(m片)膜构成。在该情况 下,振动部421的平均杨氏模量E’能够由以下的式(11)来表示。 [0081] [0082] 另外,上述式(11)中的α由以下的式(12)来定义。 [0083] [0084] 在上述式(11)、(12)中,m是构成振动部421的膜的数量,E (i=1、2、…m)是构成泊 i 松比为0.3时的振动部421的各膜的杨氏模量。 [0085] 另外,d 由以下的式(13)来表示。 i 7 7 CN 114076621 A 说明书 6/12页 [0086] [0087] 在上述式(13)中,t 是构成振动部421的各膜的厚度(k=1、2、…m)。即,d 是将构成 k i 振动部421的各膜的厚度t 相加到第i个而得到的值。 k [0088] 在此,假设在本实施方式的流体设备10具有以下记载的结构的情况下,根据上述 的式(6)以及式(10),振动部421的厚度t优选在以下的式(14)的范围内。 [0089] 振动部的短边方向的尺寸W:19μm [0090] 流路宽度L:375μm [0091] 流体S的介质的音速C:1500m/s [0092] 驻波SW的模式次数n:1 [0093] 振动膜42:SiO 膜和ZrO 膜的2层结构 2 2 [0094] SiO 膜的膜厚t1:0.35μm 2 [0095] ZrO 膜的膜厚t2:0.15μm 2 [0096] SiO 的杨氏模量E :75GPa 2 1 [0097] ZrO 的杨氏模量E :190GPa 2 2 [0098] SiO 的音速C :5900m/s 2 1 [0099] ZrO 的音速C :4650m/s 2 2 [0100] ‑6 ‑6 0.5×10 (m)≤t<685×10 (m)…式(14) [0101] [超声波元件44的配置] [0102] 在流路20的内部产生了Y方向的驻波SW的情况下,声压最大的波腹A和声压为0的 波节N沿着Y方向周期性地出现。需要说明的是,在本实施方式中,在流路20的Y方向的两端 部分别出现波腹A。 [0103] 例如,如图2所示,在产生了1次模式的驻波SW的情况下,在流路20的Y方向中央部 出现波节N,在流路20的Y方向两端部分别出现波腹A。在该情况下,分散于流体S中的微粒子 M在流路20内流通的过程中,向与驻波SW的波节N对应的范围,即流路20的Y方向中央部收敛 (声音收敛)。 [0104] 在此,流路20在Y方向上被区域划分为与驻波SW的波节N对应的波节区域RN和与驻 波SW的波腹A对应的波腹区域RA。 [0105] 需要说明的是,在将流路20的流路宽度设为L、将驻波SW的模式次数设为n时,各波 节区域RN被设为从各波节N的中心到Y方向的±L/4n的范围,各波腹区域RA被设为除此以外 的范围。 [0106] 相对于像这样进行区域划分的流路20,超声波元件44,具体而言振动部421的流体 接触面422以在Z方向上与任意的波腹区域RA对置的方式配置。换言之,元件基板41的开口 部411朝向波腹区域RA开口。 [0107] 另外,根据超声波元件44的大小,超声波元件44不仅可以存在于波腹区域RA,也可 以突出地存在于波节区域RN,但优选振动部421不与波节N对置配置。 [0108] 需要说明的是,图2例示了1次模式的驻波SW,但在本实施方式中产生的驻波SW只 要是1次模式以上即可。 [0109] [本实施方式的效果] 8 8 CN 114076621 A 说明书 7/12页 [0110] 如以上所说明的那样,本实施方式的流体设备10具备:流路20,供流体S流通;以及 超声波元件44,通过向流体S发送超声波,使流路20内的流体S沿着与流体S的流通方向正交 的第一方向(Y方向)产生驻波SW。超声波元件44具有:振动部421,具有与流体S接触的流体 接触面422;以及压电元件43,设置于振动部421,使振动部421向流体接触面422的法线方向 挠曲振动。另外,在将振动部421的厚度[m]设为t、将流体S的介质的音速[m/s]设为C,将振 动部421的纵波音速[m/s]设为C’,将Y方向上的流路20的尺寸[m]设为L,将驻波SW的模式次 数设为n时,流体设备10满足以下的式(6)。 [0111] [0112] 在这样的结构中,由于振动部421的流体接触面422与流体S接触,因此在从超声波 元件44到流体S的超声波的传播路径中不存在流路基板30。即,从超声波元件44向流体S直 接传递超声波。 [0113] 另外,通过使与流体S接触的振动部421的厚度形成在上述式(6)的范围内,能够抑 制在振动部421内的纵波的产生、从振动部421向流体S的纵波的传播。 [0114] 根据以上的结构,成为与取得超声波元件44的振动部421和与振动部421接触的流 体S之间的声音阻抗的匹配的情况相同的状态,能够提高超声波从超声波元件44向流体S的 传播效率。由此,能够将施加于压电元件43的驱动电压以及驱动频率设定得比以往低,并且 能够使产生驻波SW的流路20的宽度构成为比以往宽。其结果为,能够使可以使用流体设备 10进行处理的流体S的体积流量大量化。 [0115] 另外,本实施方式的流体设备10构成为,在将振动部421的短边方向的尺寸[m]设 为W,将泊松比设为0.3时的所述振动膜的平均杨氏模量[Pa]设为E’,将所述流体的介质的 音速[m/sec]设为C时,满足以下的式(10)。 [0116] [0117] 根据这样的结构,通过尽可能薄地形成振动部421,能够提高超声波从超声波元件 44向流体S的传播效率,并且能够抑制压电元件43被驱动时的振动部421的破损。 [0118] 另外,在本实施方式的流体设备10中,振动部421以与驻波SW中的与任意的波腹A 对应的波腹区域RA对置的方式配置。 [0119] 根据这样的配置,能够进一步提高超声波从超声波元件44向流体S的传播效率。 [0120] 另外,在本实施方式的流体设备10中,Z方向(与流通方向以及第一方向分别正交 的第二方向)上的流路20的尺寸(流路深度)H比Y方向上的流路20的尺寸(流路宽度)小。 [0121] 由此,能够抑制在Z方向上产生驻波,能够适当地产生Y方向的驻波SW。 [0122] [第二实施方式] [0123] 接着,对第二实施方式进行说明。 [0124] 图3是示意性地表示第二实施方式的流体设备10A的一部分的剖视图,图4是图3的 B‑B线] 第二实施方式的流体设备10A除了超声波产生部40相对于流路基板30的配置以 外,具有与第一实施方式的流体设备10大致相同的结构。 [0126] 以下,对与第一实施方式相同的结构标注相同的附图标记,并省略或简化其说明。 9 9 CN 114076621 A 说明书 8/12页 [0127] 在第二实施方式中,在流路基板30上设置有沿Y方向贯通侧方壁部33的贯通孔 331。 [0128] 超声波产生部40以堵塞侧方壁部33的贯通孔331的方式设置于流路基板30,由此 形成流路20的壁部的一部分。超声波元件44以振动部421的厚度方向沿着Y方向的方式配 置,振动部421在Y方向上与流路20的波腹区域RA对置。 [0129] [第二实施方式的效果] [0130] 根据以上的第二实施方式,能够起到与第一实施方式的流体设备10相同的效果。 [0131] 另外,在第二实施方式中,超声波元件44以振动部421的厚度方向沿着Y方向的方 式配置,因此来自超声波元件44的超声波的主要的发送方向与在流路20内合成驻波SW的超 声波的传播方向一致。由此,能够进一步提高驻波SW的形成效率。 [0132] [第三实施方式] [0133] 接着,对第三实施方式进行说明。 [0134] 图5是示意性地表示第三实施方式的流体设备10B的一部分的剖视图,图6是图5的 C‑C线] 第三实施方式的流体设备10B除了在超声波产生部40与流路20之间存在压力室51 以及连通路52以外,具有与第二实施方式的流体设备10大致相同的结构。 [0136] 以下,对与第一、第二实施方式相同的结构标注相同的附图标记,并省略或简化其 说明。 [0137] 压力室51是形成在流路基板30内的流体S的储存室,在Y方向上与流路20之间隔开 间隔地形成。在本实施方式中,压力室51形成于流路20的Y方向一侧的侧方壁部33,但也可 以形成于Y方向另一侧的侧方壁部34。 [0138] 连通路52形成于流路基板30的侧方壁部33的内部,是将压力室51与流路20连通的 流路。连通路52沿着Y方向形成,与流路20的侧部连接。 [0139] 流路20经由连通路52与压力室51连接,在流路20中流通的流体S流入压力室51内。 压力室51内被流体S充满。 [0140] 需要说明的是,在图5以及图6中,设置有两个连通路52,各连通路52将压力室51与 流路20连通。但是,连通路52的数量不限于两个,只要是一个以上即可。 [0141] 在流路基板30的侧方壁部33中的成为压力室51的壁部的部分设置有将压力室51 与外部沿Y方向连接的贯通孔332。超声波发送部40以堵塞该贯通孔332的方式设置于流路 基板30,由此构成压力室51的壁部的一部分。元件基板41在流路基板30的贯通孔332内以元 件基板41的厚度方向沿着Y方向的方式配置,元件基板41的外周面与流路基板30的贯通孔 332的内周面液密地接触。 [0142] 在此,超声波元件44以振动部421的厚度方向沿着Y方向的方式配置,振动部421经 由压力室51以及连通路52而在Y方向上与流路20的波腹区域RA对置。振动部421的流体接触 面422与压力室51内的流体S接触。 [0143] 另外,第三实施方式的流体设备10B构成为,不使连通路52内以及压力室51内的流 体S产生驻波,而使流路20内的流体S产生驻波,因此满足以下的式(15)。 [0144] 10 10 CN 114076621 A 说明书 9/12页 [0145] 在上述式(15)中,Lr是连通路52的Y方向的尺寸[m],Lp是压力室51的Y方向的尺寸 [m],M是自然数,n是驻波SW的模式次数,L是流路20的Y方向的尺寸(流路宽度)[m]。 [0146] 另外,第三实施方式的流体设备10B构成为满足以下的式(16)至(18)。 [0147] [0148] w ≤0.3×d …式(17) r r [0149] [0150] 在上述式(16)、(17)中,W 是连通路52的X方向的宽度[m],L是流路宽度[m],n是驻 r 波SW的模式次数,d 是连通路52的Z方向的深度[m]。 r [0151] 在满足上述式(16)、(17)的情况下,从连通路52照射到流路20内的超声波被流路 20的壁面反射而返回到连通路52时,超声波的波束宽度变得比连通路52的宽度W 大。即,成 r 为超声波的波束宽度比连通路52的宽度W 更大地扩展的状态。 r [0152] 另外,在上述的式(18)中,Sr是所有的连通路52的与Y方向正交的流路截面积 2 [m],L是流路宽度[m],n是驻波SW的模式次数,Sb是振动部421的流体接触面422的面积 2 [m],δ是振动时的振动部421的位移量[m]。 [0153] 在满足上述式(18)的情况下,将连通路52面向Y方向的流路20内的范围的体积除 以驻波SW的模式次数n而得到的值成为因振动部421的挠曲振动而产生的压力室51的体积 的最大变动量以上。 [0154] [第三实施方式的效果] [0155] 根据以上的第三实施方式,能够起到与第一实施方式的流体设备10相同的效果以 及与第二实施方式的流体设备10A相同的效果。 [0156] 在此,在第一至第三实施方式中,由于振动部421面向流体S,因此超声波元件44对 流体S直接发送超声波。在流体S内传递的超声波在声音功率几乎不衰减的状态下被流路20 的壁面反射,由此形成驻波SW。 [0157] 在上述的第一实施方式以及第二实施方式中,由于振动部421面向流路20内的流 体S,因此在流路20内被反射的超声波直接返回到振动部421。因此,超声波元件44只要不发 送最初施加的声音功率以上的超声波,就会被反射回来的超声波击败,难以使流路20内的 超声波的声音功率重叠。即,流路20内的超声波的声音功率由最初发送的超声波的声音功 率决定,难以补足声音功率。 [0158] 与此相对,第三实施方式的流体设备10B还具备:压力室51,储存流体S;以及连通 路52,沿着Y方向形成并将流路20与压力室51连通,超声波元件44以振动部421的流体接触 面422与压力室51内的流体S接触的方式配置。 [0159] 根据这样的第三实施方式,被流路20的壁面反射的超声波的一部分经由连通路52 返回到振动部421,但该超声波的剩余部分被流路20的壁面再次反射。即,能够抑制返回到 振动部421的超声波的比例。因此,超声波元件44所发送的超声波不会被经由连通路52返回 到振动部421的超声波击败,通过提高压力室51内的压力,能够在流路20内补足声音功率。 由此,容易产生更高的声音功率的驻波SW。 [0160] 特别是,第三实施方式的流体设备10B构成为满足上述式(16)、(17),从而成为超 11 11 CN 114076621 A 说明书 10/12页 声波的波束宽度比连通路52的宽度W 更大地扩展的状态,因此能够适当地发挥抑制返回到 r 振动部421的超声波的比例的效果。 [0161] 此外,在第三实施方式中,流体设备10B构成为上述式(18)成立。在此,连通路52面 向Y方向的流路20内的范围的体积除以驻波SW的模式次数n而得到的值相当于连通路52内 的介质的体积变动。通过该值成为因振动部421的挠曲振动而产生的压力室51的体积的最 大变动量以上,从而由振动膜42的变形引起的压力室51内的介质的体积变动作为连通路52 内的介质的体积变动而被排出,由此能够抑制压力室51内的压力上升。因此,能够抑制振动 膜42、压电元件43破损。 [0162] [变形例] [0163] 需要说明的是,本发明并不限定于上述的各实施方式,能够实现本发明的目的的 范围内的变形、改良以及适当组合各实施方式等而得到的结构也包含在本发明中。 [0164] (变形例1) [0165] 在上述各实施方式中,示出了在流体设备10、10A、10B中设置有一个超声波元件44 的例子,但也可以设置多个超声波元件44。 [0166] 例如,也可以相对于元件基板41呈阵列状地设置多个开口部411,设置于元件基板 41的振动膜42中的与各开口部411重叠的部分构成振动部421。在该情况下,通过对各振动 部421设置压电元件43,从而构成多个超声波元件44。 [0167] 另外,也可以设置多个上述各实施方式中说明的超声波产生部40。 [0168] 需要说明的是,在上述第三实施方式中,在设置有多个超声波元件44的情况下,上 述式(18)中的Sb是多个超声波元件44的流体接触面422的合计面积。 [0169] (变形例2) [0170] 在上述第一实施方式以及上述第二实施方式中,示出了相对于在流路20内形成的 驻波SW中的一个波腹区域RA配置了超声波元件44的例子,但也可以相对于两个以上的波腹 区域RA分别配置超声波元件44。 [0171] 但是,在驻波SW的波节N的两侧出现的波腹A中,压力波形的相位彼此相反。 [0172] 因此,优选在配置于与一方的波腹A对应的波腹区域RA的超声波元件44与配置于 与另一方的波腹A对应的波腹区域RA的超声波元件44之间,使驱动频率的相位相反。 [0173] (变形例3) [0174] 在上述第三实施方式中,超声波元件44以振动部421的厚度方向沿着Y方向的方式 配置,但不限于此。 [0175] 例如,在上述第三实施方式中,也可以在成为压力室51的壁部的流路基板30的部 分设置Z方向的贯通孔,超声波产生部40以堵塞该贯通孔的方式设置,超声波元件44以振动 部421的厚度方向沿着Z方向的方式配置。 [0176] 在该情况下,从超声波元件44发送的超声波中的、相对于Z方向具有角度的成分经 由连通路52朝向流路20,在流路20的内壁反复反射,由此在流路20内产生Y方向的驻波SW。 [0177] (变形例4) [0178] 上述各实施方式中说明的超声波产生部40的具体结构能够进行各种变形。 [0179] 例如,元件基板41也可以配置在流路基板30的贯通孔311的外侧。在该情况下,元 件基板41的开口部411以与流路基板30的贯通孔311重叠的方式配置,元件基板41的下表面 12 12 CN 114076621 A 说明书 11/12页 液密地接合到流路基板30的上表面。 [0180] 另外,超声波产生部40也可以不具备元件基板41,振动膜42设置于流路基板30。在 该情况下,振动膜42中的与流路基板30的贯通孔311、331重叠的部分构成振动部421。 [0181] (变形例5) [0182] 在上述各实施方式中,作为与流体S的流通方向正交的一个方向,在流路20的宽度 方向(Y方向)产生驻波SW,但也可以在流路20的深度(Z方向)产生驻波SW。在该情况下,能够 采用将上述各实施方式中说明的Y方向和Z方向适当置换的结构。 [0183] [本公开的总结] [0184] 本公开的一个方式所涉及的流体设备具备:流路,供流体流通;以及超声波元件, 通过向所述流体发送超声波,使所述流路内的所述流体沿着与所述流体的流通方向正交的 第一方向产生驻波安博体育,所述超声波元件具有:振动部,具有与所述流体接触的流体接触面;以 及压电元件,设置于所述振动部,使所述振动部向所述流体接触面的法线方向挠曲振动,在 将所述法线方向上的所述振动部的厚度设为t,将所述流体的介质的音速设为C,将在所述 振动部内传递的纵波的平均音速设为C’,将所述第一方向上的所述流路的尺寸设为L,将所 述驻波的模式次数设为n时,满足下式: [0185] [0186] 在这样的结构中,由于振动部的流体接触面与流体接触,因此在从超声波元件到 流体的超声波的传播路径中不存在其他部件。即,从超声波元件向流体直接传递超声波。 [0187] 另外,通过使与流体接触的振动部的厚度形成在上述式的范围内,能够抑制在振 动部内的纵波的产生、从振动部向流体的纵波的传播。 [0188] 根据以上的结构,成为与取得超声波元件的振动部和与振动部接触的流体之间的 声音阻抗的匹配的情况相同的状态,能够提高超声波从超声波元件向流体的传播效率。由 此,能够将施加于压电元件的驱动电压以及驱动频率设定得比以往低,并且能够使产生驻 波的流路的宽度构成为比以往宽。其结果为,能够使可以使用流体设备进行处理的流体的 体积流量大量化。 [0189] 在本方式所涉及的流体设备中,在将与所述振动部的所述法线方向正交的短边方 向的尺寸设为W,将泊松比设为0.3时的所述振动部的平均杨氏模量设为E’,将所述流体的 介质的音速设为C时,满足下式: [0190] [0191] 根据这样的结构,通过尽可能薄地形成振动部,能够提高超声波从超声波元件向 流体的传播效率,并且能够抑制压电元件被驱动时的振动部的破损。 [0192] 在本方式所涉及的流体设备中,所述振动部以与所述驻波中的与任意波腹对应的 波腹区域对置的方式配置。 [0193] 根据这样的配置,能够进一步提高超声波从超声波元件向流体的传播效率。 [0194] 在本方式所涉及的流体设备中,所述振动部以所述流体接触面的所述法线方向沿 着所述第一方向的方式配置。 [0195] 由此,来自超声波元件的超声波的主要的发送方向与在流路内合成驻波的超声波 13 13 CN 114076621 A 说明书 12/12页 的传播方向一致,因此能够进一步提高驻波的形成效率。 [0196] 在本方式所涉及的流体设备中,与所述流通方向以及所述第一方向分别正交的第 二方向上的所述流路的尺寸比所述第一方向上的所述流路的尺寸小。 [0197] 由此,能够抑制在第二方向上产生驻波,能够适当地产生第一方向的驻波。 [0198] 在本方式所涉及的流体设备中,还具备:压力室,储存所述流体;以及连通路,沿着 所述第一方向形成,并且将所述流路与所述压力室连通,所述超声波元件以所述流体接触 面与所述压力室内的所述流体接触的方式配置。 [0199] 根据这样的结构,超声波元件所发送的超声波不会被在流路内被反射而经由连通 路返回到振动部的超声波击败,通过提高压力室内的压力,能够在流路内补足声音功率。由 此,容易产生更高的声音功率的驻波。 14 14 CN 114076621 A 说明书附图 1/6页 图1 15 15 CN 114076621 A 说明书附图 2/6页 图2 16 16 CN 114076621 A 说明书附图 3/6页 图3 17 17 CN 114076621 A 说明书附图 4/6页 图4 18 18 CN 114076621 A 说明书附图 5/6页 图5 19 19 CN 114076621 A 说明书附图 6/6页 图6 20 20

  2、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问加。

  3、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。

  4、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档

  变速器、特别是对式变速器和通过多腔系统进行有利的油润滑的轴承托架以及适于润滑变速器的方法.pdf

  2021上半年宁夏教师资格证初级中学语文学科知识与教学能力真题及答案.doc

  2021下半年贵州教师资格证高级中学语文学科知识与教学能力真题及答案.doc

  2023年11月湖南省长沙市望城区引进部属师范院校湖南籍优秀公费师范毕业生20人笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年11月广西北海市铁山港区自然资源信息中心公开招聘1人笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年10月山西省霍州市事业单位公开招考330名工作人员笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年09月浙江台州三门县人民政府办公室公开招聘笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年11月江苏省滨海县纪委监委公开选调3名事业单位工作人员笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年09月四川省越西县人力资源和社会保障局下半年公开考试招考24名事业单位工作人员笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  2023年09月德昌县人力资源和社会保障局下半年公开考试考试公开招聘事业单位工作人员(51人)笔试历年高频考点(难、易错点荟萃)附带答案详解.docx

  《列那狐的故事》整本书阅读推进课(教案)部编版语文五年级上册1.docx

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者

Copyright© 2022-2024 安博体育(中国)官方网站 版权所有HTML地图 XML地图赣ICP备19013689号